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SUMMARY 

A new iterative algorithm for the solution of the three-dimensional Navier-Stokes equations by the finite 
element method is presented. This algorithm is based on a combination of the Uzawa and the 
Arrow-Hurwicz algorithms and uses a preconditioning technique to  enhance convergence. Numerical tests 
are presented for the cubic cavity problem with two elements, namely the linear brick Q,-Po and the 
enriched linear brick Q: - P, . It is shown that the proposed methodology is optimal with the enriched 
element and that the C P U  time varies as NEQ'.44, where N E Q  is the number of equations. 
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INTRODUCTION 

The development of efficient finite element methods for the computation of three-dimensional 
incompressible viscous fluid flow problems is a current field of active research. In a three- 
dimensional context, iterative methods are commonly accepted to be a much better alternative 
than direct methods (LDU factorization), since they yield better numerical performance (smaller 
memory requirements and CPU time) and can adapt more easily to parallelism and vectorization. 
In flow problems the major difficulty lies in finding an iterative method which can deal effectively 
with the incompressibility constraint. Indeed, iterative solvers are very sensitive to conditioning 
and it is well known that the divergence-free constraint degrades matrix conditioning. 

Among the various iterative techniques which can be used to solve linear systems, methods 
based on conjugate gradients are the best choice. For unconstrained elliptic or quasi-elliptic 
problems, the preconditioned conjugate gradient method using incomplete factorization as 
preconditioning (called the incomplete Choleski conjugate gradient method or ICCG) has been 
used very For constrained problems such as the Navier-Stokes equations, 
conjugate gradient methods work well only for low-Reynolds-number steady state problems 
discretized with a mixed (velocity-pressure) f~ rmula t ion .~  

To overcome the difficulty associated with the imposition of the divergence-free constraint, a 
successful decoupling technique has been proposed for the Stokes equations.536 This method is 
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based on the Uzawa algorithm, which consists of computing the momentum transport equation 
(primal problem) separately from the incompressibility constraint (dual problem). The primal 
problem is solved with the ICCG method while the dual problem is preconditioned by a Poisson 
equation and solved iteratively. More recently,' an iterative method combining the Uzawa 
algorithm and an Arrow-Hurwicz method has been introduced. It uses block-domain decompo- 
sition as preconditioning. 

In this work a variant of the two previous methods is presented. It consists of an iterative 
implementation of the Uzawa algorithm and makes use of an incomplete LDLT factorization of 
the viscous matrix as preconditioning. The convergence properties of this algorithm are assessed 
for the three-dimensional lid-driven cubic cavity problem as a function of the mesh size (i.e. the 
number of elements) for two types of elements. 

FINITE ELEMENT APPROXIMATION 

Let us consider the equations governing a viscous incompressible fluid flow: 

p(u-gradu) = -gradp+pdiv (gradu), (1) 

div u = 0, ( 2 )  
where u denotes the velocity vector, p is the pressure, and p and p denote the fluid density and 
viscosity respectively. The solution of (l), (2) is equivalent to considering the following weak 
variational formulation: 

W u , p ) =  p / p a ( u ,  $)+(u.gradu,$)+I/p(p,div$)=O, V $ E K  (3) 

(@, div u)  = 0, V@ E Q, (4) 
where R(u, p )  is the residual, and $ and @ are test functions belonging to the appropriate spaces V 
and Q. The L 2 ( 0 )  scalar product (,) is defined as 

r 

(u, u) = J uudO, 
R 

and a(u, $), the diffusion term, is of the form 

a(u, $) = grad u grad $ dSZ. 

The finite element method is used to discretize (3), (4). Two types of elements are considered. 
The first element is the standard Q,-Po brick, a hexahedral element with trilinear velocity and 
piecewise-discontinuous constant pressure. This element does not satisfy the Brezzi compatibility 
condition and is thus subject to spurious pressure modes and possibly to  locking if the number of 
constraint equations is superior to the number of degrees of freedom. The reader is referred to 
Reference 8 for more explanations and to Reference 4 for an example. The second element is an 
enriched hexahedral element called Q:-P,;93 l o  it is obtained by adding to the previous element 
one velocity degree of freedom on each face (normal velocity), approximated with an incomplete 
triquadratic polynomial, and three velocity degrees of freedom at the element centroid, approx- 
imated with a triquadratic polynomial. Such an enrichment of the discrete velocity basis allows the 
use of a linear approximation for the pressure; the Brezzi compatibility condition is satisfied at the 
element level, enabling local mass conservation. The numerical integration is performed with a 
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Gaussian quadrature using 2 x 2 x 2 integration points for the Q1 -Po and 3 x 3 x 3 for the 
a: -PI. 

The following matrix formulation can then be readily obtained: 

[ A  + C ( V h ) ]  Uj, + BTph = F ,  (7) 

BVh = 0, (8) 
where uh and P h  are the discrete velocity and pressure (nodal values) respectively, A is the viscous 
term matrix, B is the divergence matrix, c ( u h )  is the advection matrix and F is a vector which 
takes into account the boundary conditions. 

UZAWA ALGORITHM 

We recall now the basic ideas of the Uzawa algorithm." Based on the decoupling of the 
momentum equations and the divergence-free constraint, it applies only to symmetric positive- 
definite problems. Let us first consider the Stokes problem (the advection matrix is omitted in (7)), 
which belongs to this class of problems. Its solution can be obtained by solving the following 
saddle-point problem: 

where the Lagrangian functional is expressed as 

L(u, q) = J(u)  + (4, Bu) = &lu, u) - ( F ,  u) + (4, Bu). (10) 
It is well known that, to improve convergence, a penalty technique can be used to impose the 
incompressibility constraint, leading to an augmented Lagrangian functional 

(1  1) 

The Uzawa algorithm consists of two steps. The first step, called the primal problem, is nothing 
but the minimization of L(u, q) with respect to u. When a direct solver is used, the solution is 
simply (the subscript h will be omitted to simplify the notation): 

U u ,  4) = U U ,  4) + rlBu12. 

u = A - ' ( F - B T q ) .  (12) 
Moreover, it can then be shown" from (1  1)  that, for a symmetric positive-definite matrix, the 

maximization in q, called the dual problem, is equivalent to solving 

BA - 1BTp = BA - ' F .  (13) 
This constitutes the second step. A natural choice for the resolution of (13) is the conjugate 

gradient method. Indeed, this method avoids the construction of a global BA-  'BT operator, 
which cannot be computed for elements with discontinuous pressures. This step represents the 
projection of the velocity field onto a divergence-free subspace. 

Uzawa algorithm 

pl being given 

Primal problem 

(i) u1 = A-'(F-BTp') 
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Dual problem 

For j = 1 to m 

(ii) d j =  Buj f o r j =  1 
for j > 1 d j  = B u j +  b j d j - '  

with 
(iii) p i + l  = p j + a j d j  

u j + l  = u j + a j z i  

with zj = A - ' B T d j  

b j  = (Buj, Buj)/(Bu'-', Buj - ' )  

a j  = (Buj, Buj)/(Buj, B z j )  

Next j .  

where m is the maximum number of projections. From a practical point of view, a stopping 
criterion is used inside the loop to assess the convergence of the dual problem. 

This algorithm was studied by Fortin and Glowinski.' They showed that it is very efficient 
when the divergence-free condition is penalized. In such a case the matrix A is replaced by 

A,  = A + r B T B ,  (14) 
where r is the penalty parameter. For large values of r (in the range 106-108), a j  in step (iii) tends 
towards r .  In this case it should be noted that m = 1 is sufficient to converge the dual problem. By 
using a descent method instead of a conjugate gradient method, the Uzawa algorithm can then be 
simplified into a classic penalty algorithm. The use of a moderate value of r (in the range 10-100) 
has a preconditioning effect on the dual problem and increases the convergence of the algorithm 
significantly. 

INCOMPLETE UZAWA ALGORITHM 

For three-dimensional problems the Uzawa algorithm requires large computational resources 
owing to the use of a direct solver for the primal problem. We propose in this work to introduce 
an iterative method for the solution of (7). It is based on a modified two-step Arrow-Hurwicz 
algorithm.I2 Let us first present this algorithm. 

Instead of inverting the matrix A,  an approximation of A,-', denoted Sr-', is computed and 
used in an iterative fashion. The resulting algorithm is presented below. 

Modijied Arrow-Hurwicz algorithm 

u 1  and p 1  being given 

For i = 1 to y1 

Primal problem 

(i) ui+  ' / 2  = yi + a'sr- lR i  

with R ,  = ( F  - BTp' - A,ui)  
ai = (R i ,  S,-'Ri)/(ASr-'Ri, Sr-'Ri) 

Dual problem 
(ii) - - p i + b i B v i + l / 2  

, , j + l  = vi+1/2+~iSr-1~Tui+1/2 

) with bi = (Bui+1/2, BUi+l/2)/(BUi+1/2, B S , - ~ B T B ~ ~ + ~ / ~  

Next i. 
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The above algorithm calls for a few comments. The second step was introduced by Aboulaich 
et al.' in order to minimize the divergence of d+l.  It can be viewed as one step of a gradient 
method, applied to the problem of projecting u i  onto a divergence-free subspace with respect to 
the norm associated with the matrix A,  (A,-norm). To make things clearer and to grasp better the 
significance of the method described later, we shall first analyse the Uzawa algorithm in more 
detail. The first step of this algorithm minimizes, p' being given, the Lagrangian L,(u, q) with 
respect to u. The second step projects ui onto the divergence-free subspace with respect to the 
A,-norm. Indeed, let us consider the problem 

Inf +(Ar(u-ul ) ,  u - u ~ ) ,  
B u = O ,  U S V  

where V is the space of admissible velocities. It is easily seen that the solution of this equation 
satisfies 

A,u+ BTp = A,u', (16) 

BU = 0. (17) 

But every projection iteration of the Uzawa algorithm leads to 

Art?+ ' = A,d  + BTp". (1 8) 

The solution of the Stokes problem is then nothing else but the projection of the unconstrained 
solution onto the divergence-free subspace with respect to the A,-norm. 

Suppose now that we have computed an approximation S; of A; '. An important point is that 
r should not be chosen too large since the condition number of A,  would increase, thus decreasing 
the convergence rate of the iterative method. Let us consider an implementation of the Uzawa 
algorithm into the modified Arrow-Hurwicz algorithm. As for the previous algorithms, it would 
comprise two steps. The first step is similar to the first step of the Arrow-Hurwicz algorithm and 
consists of solving the primal problem by an iterative method using S,-'R, as the descent 
direction. The second step is nothing but the resolution of the dual problem in an Uzawa-like 
fashion. 

The primal and dual problems can be solved either by a descent or by a conjugate gradient 
method. The choice of a method may vary from one step to another. It depends on the 
convergence properties and the respective amount of computational time the methods require. It 
should be noted that this choice may depend on the problem size and may also be influenced by 
the computer architecture (vector or parallel computer). In the following we consider the use of a 
descent method for the resolution of the primal problem and a conjugate gradient method for the 
resolution of the dual problem. The resulting algorithm, called the incomplete Uzawa algorithm, 
is as follows. 

Incomplete Uzawa algorithm 

vl and pl being given 

For i = 1 to n 

Primal problem 
(i) y i + l  = ui+ciSr-lRi 

with R' = ( F  - BTpi - A d )  
ci = (R', Sr-lRi)/(ASr-' Ri, Sr-'Ri) 
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Dual problem 

For j = 1 to m 

Let u j  = u i + l  and p J  = pi+ l  

(ii) d j = B u j  f o r j =  1 
d j  = Buj+ b jd j - '  for j > 1 
with b j  = (Buj, Buj)/(Buj-', BuJ- ' )  

(iii) p j + l  = p j + a j d j  
u j + l  = j + ajzi 

with z j  = S,-'BTdj 

for j = 1 

d = (Bu', Buj)/(Bu', Bz') 

Next j 
(iv) J + l  = u i + l  

P j + l  = p i + '  

Next i. 

Several ways of preconditioning may be considered to enhance the convergence of the above 
algorithm: block-domain decomp~sition,~ element-by-element prec~nditioners,'~ multigrid 
methods14 and incomplete factorization, among others. The incomplete factorization is a very 
interesting choice since it yields a computationally efficient algorithm when combined with the 
preconditioned conjugate gradient method. In the present work an incomplete LDLT factor- 
ization coupled to a packed skyline static storage method4 is used. 

The remainder of the paper is devoted to the numerical study of the convergence properties of 
the incomplete Uzawa algorithm. An important issue is to obtain an iterative method that does 
not slow down too much as the number of elements increa.ses. Our goal is to be as close as 
possible to the performance of the ICCG method used for unconstrained systems. We recall that, 
for an N x N x N mesh (lid-driven cavity problem), the ICCG method applied to a second-order 
elliptic problem15 is of order NEQ"17, where NEQ is the number of equations. Since there is a 
price to pay for the solution of the dual problem in our algorithm, we hope to obtain a figure 
comprised between the order of the ICCG method and the order of the LDU fact~rization, '~ 
NEQ2'33. Since there is no theoretical background to select optimal values for the number of 
primal and dual iterations, numerical experiments will be used to devise an algorithm of optimal 
order. 

NUMERICAL RESULTS 

Similarly to the original Uzawa algorithm, the incomplete Uzawa algorithm requires a symmetric 
positive-definite matrix system. This algorithm can then be used directly to get the solution of the 
Stokes equation, for both creeping or quasi-creeping flow problems (low Reynolds number), 
provided the convective terms have been placed on the right-hand side of the equation. There is 
obviously a threshold value for the Reynolds number above which this Picard-like strategy will 
not work any longer. Prior to evaluating this threshold value, let us first study the numerical 
behaviour of the solution of the Stokes problem. 

Stokes problem 

The classical lid-driven cubic cavity problem is considercd for the numerical tests. Three 
regular structured meshes are used: 7 x 7 x 7 elements, 9 x 9 x 9 elements and 11 x 11 x 11 



ITERATIVE IMPLEMENTATION OF THE UZAWA ALGORITHM 435 

elements (see Table I). The convergence of the algorithm is analysed by plotting the norm of the 
residual of (7), 1) R 11, defined as (R, R)li2, and the norm of the divergence of the velocity field, 11 Bu 11, 
defined as (Bu, Bu)li2, versus the number of iterations. It must be first pointed out that the 
convergence of / /  R Ij will be influenced by the convergence of ( 1  Bu I/ since the pressure, which 
cannot be more accurate than the divergence of the flow field, appears explicitly in the expression 
of IIRII. 

Another measure of the convergence properties is also used. It is defined differently for the 

(19) 

(20) 
where i and j represent an iteration counter for the primal and dual problems. K ,  and K ,  
represent the slope of ( I R ( (  and ( 1  Bull with respect to the number of iterations on a semi- 
logarithmic graph. A similar measure of the convergence rate has been used for multigrid 
methods. l4 

primal and dual problems. Two parameters are introduced: 

K ,  = -log,,( I1 R I1 i/ I1 R II O ) / i ?  

Kd = - loglo( 11 Bu II ' / I1  Bo llo)/j, 

Primal and dual problem convergence 

It is first interesting to study the convergence of the primal and dual problems separately. The 
primal problem is a standard unconstrained problem solved with an ICCG method. Its con- 
vergence rate is of order NEQ"". For the dual problem the most important aspect is the rate at 
which the divergence vanishes. The convergence of I/ Bull versus the number of projection 
iterations is presented in Figure 1 for the three meshes (Q,-Po and Q;-P, elements). It can be 
observed that for the latter element the convergence is linear and does not depend on the problem 
size. This is indeed a property of the Uzawa algorithm. 

For the Q,-Po element a quite different trend can be noted. The rate of convergence is large 
during the first iterations but then decreases rapidly. When the value of 11 Bull reaches the 
rate of convergence starts increasing, to become finally linear after 1) Bu 1) reaches Further- 
more, the number of iterations needed before reaching the linear convergence zone increases 
significantly with the problem size. This phenomenon is due to the fact that the Q,-Po element 
does not satisfy the Brezzi compatibility condition. It can be shown that some eigenvalues of the 
dual problem tend towards zero with the element size, and that their number increases with the 
number of elements.16 The dual problem is thus ill conditioned and the convergence of the 
algorithm degrades. 

The convergence of the Uzawa algorithm may be improved by using a penalty technique to 
impose the incompressibility constraint. It should be pointed out, however, that penalizing 
decreases the convergence rate of the ICCG method for the primal problem, because it affects the 
matrix conditioning. The penalization effect of the convergence rate of both the primal and dual 
problems is displayed in Table I1 for the three meshes considered (Ql-P, elements). In the case of 
the dual problem the convergence rate ( K , )  is presented for the conjugate gradient-Uzawa (CG) 
algorithm and for the optimal descent-Uzawa (OD) algorithm. For the primal problem the 

Table I. Description of the cavity meshes 

Number of elements Matrix rank 

7 x 1 ~ 1  (343) 120 
9 X 9 X 9  (729) 1664 
11 x 11  x 11  (1331) 3260 
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1 oo 

I o - ~  

0 40 80 120 160 200 
Iterations 

Figure 1. Convergence of the Uzawa algorithm (three meshes) 

Table 11. Influence of penalization on the convergence rate for the primal and 
dual problems (QT-P, element) 

N = I  N = 9  N = I l  

r = O  r = l O  r = O  r = l O  r = O  r = l O  

CG ( K d )  0.34 0.96 0.33 0.92 0.33 0.92 
OD (Kd) 0.11 062 012 0.60 0.12 0.60 
PCG (K,) 0-48 040  0.36 0.30 026 0.22 

convergence rate ( K , )  is also presented using the ICCG method with penalty parameter values of 
0 and 10. 

The convergence of the dual problem is faster with the conjugate gradient method than with 
the optimal descent method. It is interesting to note that, when using a small value of the penalty 
parameter (r = lo), the convergence rate increase for the dual problem is significantly larger than 
the convergence rate decrease for the primal problem. It can also be seen that increasing the 
problem size decreases the convergence rate of the primal problem but does not influence the 
convergence rate of the dual problem. 

It is also interesting to compare the convergence of the dual problem for different types of 
elements. The convergence of the conjugate gradient-Uzawa algorithm is presented in Table I11 
for the Q:-P, element and for the P,-PI element with continuous pressures,6 two elements 
which satisfy the Brezzi condition. It can be observed that the convergence is significantly better 
with the Q: -PI element. Furthermore, preconditioning the Uzawa algorithm by an incomplete 
factorization has proven as efficient as the technique developed by Cahouet and Chabard.6 

As mentioned above, the Q,-P, element is not well suited for Uzawa-type algorithms. Since 
it is the most commonly used three-dimensional element, its influence on the convergence 
properties of the incomplete Uzawa algorithm will be assessed. 
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Incomplete Uzawa algorithm 

The convergence properties of the incomplete Uzawa algorithm are first studied with the 
Q,-Po . The convergence of 11 Bu 11 and 11 R 11 is presented in Figure 2 versus the number of descent 
iterations, n, for a 7 x 7 x 7 element mesh without penalization (r  = 0). In the case of I( Bu 1 1  the 
convergence history is shown for each primal iteration. It can be seen that 11 R 11 converges linearly 
when the number of projection iterations is sufficiently large (rn = 100). This is a property of the 
descent method applied to the primal problem. On the other hand, when the divergence is only 
partially projected (rn = 10) a linear convergence down to is first obtained, followed by a 
significant decrease of the convergence rate. The convergence rate of the algorithm is then limited 
by the convergence rate of 11 Bu 11 for that problem. 

A different convergence behaviour is obtained with the Q:-Pl element (see Figure 3). When 
only one projection iteration is made, the convergence of 1 1  R I( is limited by the convergence of the 
dual problem. It can be noted that the convergence is linear since, when m = 1, the dual problem 
is solved by an optimal descent method. With as few as three projection iterations, however, the 

Table 111. Comparison of K ,  for the Uzawa algorithm with Q:-P, and 
P,-P, elements 

This work (Q:-P,) 

r = O  r =  10 Not precond. Precond. 

Reference 6 (P,-P,) 

Kd 0.34 0.96 0.05 1 0.35 

0 2 4 6 8 10 
Iteration 

Figure 2. Convergence of the incomplete Uzawa algorithm for a 7 x 7 x 7 mesh of Q,-Po elements 
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0 20 40 60 80 100 

Cumulative descent iterations 

Figure 3. Convergence of 11 R /I for a 7 x 7 x 7 mesh of Q:-P, elements with the incomplete Uzawa algorithm 

convergence becomes limited by the primal problem and does not depend on m. Again the 
convergence is linear since the primal problem is solved by an optimal descent method. 

It should be pointed out that for both elements the projection step of the incomplete Uzawa 
algorithm requires most of the computational time. It is then important to minimize the number 
of projection iterations. The penalization of the matrix A then becomes an interesting alternative 
to improve the convergence of the projection step, a feature which appears essential for the QI-Po 
element. As mentioned above, the penalization degrades the convergence speed of the minim- 
ization step. This comes from the fact that the penalization is only partially transmitted to s;' 
owing to the incomplete factorization. In fact, for a penalty parameter as low as 20 the original 
Uzawa algorithm does not converge for a 7 x 7 x 7 mesh of Q,-Po elements. 

The effect of penalization on the convergence of 11 Bu 11 versus the cumulative projection 
iterations (m) is shown in Figure 4 for the Q,-Po. For values of IIBu(I down to lop5 the 
convergence is limited by the convergence of the primal problem and is slightly influenced by the 
penalization. When jl Bu Ij has converged further, the convergence is limited by the convergence of 
the dual problem and is significantly improved by using a penalty parameter value of 10. 

The variation of the convergence behaviour with the problem size is shown in Figure 5. The 
convergence of / I  Bu 11 is presented for N = 7,9 and 11 with wn = 10 and r = 10 for the Q1-Po, and 
with m = 2 and r = 1 for the Q:-Pl. It can be observed that the convergence is linear for the 
Q:-P, and decreases as the problem size increases. The convergence with the Q,-Po exhibits the 
same trend as previously. Furthermore, the rate of convergence also decreases with the problem 
size. 

For the Ql-Po the optimal numerical strategy for solving the Stokes problem on a 7 x 7 x 7 
mesh is to penalize with r = 10 and to iterate 10 times on the projection step (m = 10). For larger 
problems the optimal strategy varies, and for N = 9 and 11 it consists of penalizing with r = 10 
and increasing the number of projection iterations to 15 and 20 respectively. 

The effect of penalization on the Q:-Pl element is not significant since the convergence of the 
dual problem is excellent and does not require a large number of projection iterations. The 
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Figure 4. Influence of penalization on the convergence of I/ Bu 11 for a 7 x 7 x 7 mesh of Q,-Po elements with the 
incomplete Uzawa algorithm 

0 20 40 60 80 100 120 140 160 

Cumulative projection iterations 
Figure 5 .  Convergence of the incomplete Uzawa algorithm (three meshes) 

optimal strategy for a 7 x 7 x 7 mesh is then to penalize slightly (r  = 1) and to iterate twice on the 
dual problem (m = 2). For N = 9 and 11 the optimal strategy is to take r = 2.5 and rn = 1. 

The performace of the overall algorithm can be assessed in Figure 6,  where the variation of the 
CPU time to reach a residual of lo-'' is plotted versus the rank of the matrix system. All the tests 
were performed with the optimal penalty parameter and number of projection iterations. It can 
be seen that for the Q:-Pl element the computational labour of the incomplete Uzawa algorithm 
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varies as O(NEQ"44) compared with O(NEQ'.I7) for the ICCG method and O(NEQ2.33) for 
Gaussian elimination. For the Q,-Po element the proposed algorithm is O(NEQ"65). 

Another very important feature of iterative methods is their low storage requirements. Indeed, 
both the TCCG and the incomplete Uzawa algorithms are O("EQ) while Gaussian elimination is 
O(NEQ"67).'s These figures yield, for a matrix rank of lo4, an improvement of one order of 
magnitude over Gaussian elimination for both the computational and storage requirements (see 
Table IV). It must be noted that the largest problem solved with the incomplete Uzawa algorithm 
was for a matrix of rank 31 000. 

Nuvier-Stokes problems 

In the case of the Navier-Stokes equations the matrix is not symmetric and the maximization 
in q of (9) is no longer equivalent to solving (13). To preserve the symmetry of the matrix, the 
advective terms introduced by the Navier-Stokes equations have been taken into account by a 
fixed-point method. This has been done by introducing the advective terms in the definition of the 
residual R i  for the primal problem of the incomplete Uzawa algorithm. The same lid-driven cavity 

lo3  

- 
03 
?? 

A 

2 
-2 
8 
2 10' 

a 

> 
4 a: 
u) A 

3 

0 

1 oo 
1 o2 1 o3 1 o4 1 o5 

Rank of linear system 

Figure 6. Variation of the CPU time with the problem size for the incomplete Uzawa algorithm 

Table IV. Comparison of computer resources (4000 
linear elements, loo00 equations) 

Gaussian Incomplete 
elimination Uzawa algorithm 

CPU time 
(Cyber 835) 30 h 3 h  
Storage 80 Mbytes 8 .Mbytes 
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LK - - 

0 1 2 3 4 5 6 
Iterations 

Figure 7. Comparison of convergence behaviour for different algorithms at Re = 50 

problem is considered to study the convergence of the incomplete Uzawa algorithm for the 
Navier-Stokes equations, the domain being discretized with a mesh of 800 elements (1 863 
equations). Solutions have been computed for the following Reynolds numbers: Re = 25, 50, 75 
and 100. The convergence of I( R 11 and 11 Bu 11 for Re = 50, starting from a solution at Re = 25, is 
presented in Figure 7 for different algorithms. It can be seen that the convergence of the 
incomplete Uzawa algorithm follows the same trend as the convergence of the standard 
methodology (penalty technique, LU factorization, quasi-Newton linearization technique). The 
difference between the two convergence curves is due to the penalty term in the expression of the 
residual. 

The incomplete Uzawa algorithm could give solutions up to Re = 200. For larger Reynolds 
numbers the fixed-point method for the advective terms diverges. A cure could be to treat the 
convective terms through the use of an operator-splitting method, which combines the com- 
putation of the hyperbolic part of the equation by the method of characteristics, and the 
computation of a Stokes p r ~ b l e m . ~ . ~  Another strategy could be to solve an unsteady problem 
while still treating the advective terms by a fixed-point method. Preliminary tests have shown that 
the incomplete Uzawa algorithm converges very well in the latter case, and it was possible to 
obtain a solution at  Re = 3300 for the lid-driven cubic cavity problem. A detailed convergence 
analysis is under way and will be published later. 

CONCLUSION 

We have presented in this paper an iterative implementation of the Uzawa algorithm for the 
solution of 3D fluid flow problems. This new algorithm, called the incomplete Uzawa algorithm, 
is a hybrid of the standard Uzawa algorithm and the Arrow-Hurwicz algorithm. Its advantage 
over the former lies in the use of an iterative solver for the resolution of the primal problem, 
yielding a drastic reduction of the computational labour. On the other hand, the incomplete 
Uzawa algorithm allows a full projection of the velocity field onto the divergence-free subspace 
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(dual problem), which is not the case with the Arrow-Hurwicz algorithm. By carefully selecting 
the level of penalization in the primal problem and by using an incomplete LDLT preconditioner, 
it was possible to solve the Navier-Stokes equation with a computational labour of order 
NEQ"44. 
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